

Webinar: Conceptualizing a National Geospatial Software Institute

NSF SI2-S2I2 Conceptualization: Geospatial Software Institute (GSI)

Tuesday, December 17th: 3 – 4pm CT

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

Steering Committee

Donna Cox National Center for Supercomputing Applications/University of Illinois

Co-PI

Michael F. Goodchild University of California - Santa Barbara Chair of the advisory committee

Daniel S. Katz National Center for Supercomputing Applications Co-PI

Paul Morin University of Minnesota Co-Pl

Margaret Palmer University of Maryland

Co-PI

Anand Padmanabhan University of Illinois at Urbana-Champaign

Project Manager

Shaowen Wang

University of Illinois at Urbana-Champaign

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

Luc Anselin University of Chicago

Michael Batty University College London

David Maidment University of Texas-Austin

Victoria Stodden University of Illinois at Urbana-Champaign

George Percivall
Open Geospatial Consortium

E. Lynn Usery United States Geological Survey

Nancy Wilkins-Diehr

San Diego Supercomputer Center/University of California, San Diego

Background

Cyberinfrastructure for Sustained Scientific Innovation (CSSI) - Data and Software:

Elements and Frameworks

PROGRAM SOLICITATION NSF 18-531

REPLACES DOCUMENT(S): NSF 17-500, NSF 17-526

National Science Foundation

Directorate for Computer & Information Science & Engineering Office of Advanced Cyberinfrastructure

Directorate for Biological Sciences

Directorate for Education & Human Resources

Directorate for Engineering

Directorate for Geosciences

Directorate for Mathematical & Physical Sciences

Directorate for Social, Behavioral & Economic Sciences

Existing NSF Software Institutes

Geospatial Data Complexity

- Dynamic
- Distributed sharing
- Heterogeneous
- Massive
- Multi-scale
- Privacy
- Quality
- Uncertainty

Geospatial Software

- Software for transforming geospatial (geo & spatial) data into information, knowledge, and intelligence
- Fusion of rapidly changing multidisciplinary sciences and technologies

Big Scientific and Societal Challenges

GSI

Increasing geospatial problems and questions!

Matching Well with NSF's Big Ideas

https://www.nsf.gov/news/special reports/big ideas/

Conceptualization Process

- Three Workshops
- Community Survey
- AAG-UCGIS Summer School

Three Workshops

- 76 Position Papers Accepted

- Workshop 1: Mission and vision
 - <u>https://gsi.cigi.illinois.edu/workshop/position-papers/</u>
- Workshop 2: Use cases and core capabilities
 - <u>https://gsi.cigi.illinois.edu/workshop2/position-papers/</u>
- Workshop 3: Strategic plan and governance
 - <u>https://gsi.cigi.illinois.edu/workshop3/position-papers/</u>

Community Survey http://bit.ly/gssusersurvey

Electronic Consent Form For Voluntary Participation in a Research Project (NSF SI2-S2I2 Conceptualization: Geospatial Software Institute):

Assessing the Needs and Practices of the Geospatial Software Community

This research project is being conducted by Shaowen Wang from the Department of Geography at the University of Illinois at Urbana-Champaign (UIUC). It has been funded by the National Science Foundation. Your participation is completely voluntary and you must be 18 years of age or older to participate. You are free to decline to participate. You may choose to withdraw from participation at any time without penalty or negative repercussion. The decision to participate, decline, or withdraw from participation will have no effect on your status at or future relations with the University of Illinois.

The goal of this project is to conduct research to understand the current needs of the geospatial software community. The main activities in the survey will involve answering a series of questions regarding the geospatial software that you currently use and what you use it for. We will also ask you a few questions about your education, occupation, and institutional affiliation. This activity should take you about 15 minutes to complete. While you may not directly benefit from your participation in this project, your response will allow the researchers to better understand the needs of the geospatial software community and to design innovative

Survey Team at UIUC

William Barley

Dan Katz

Anand Padmanabhan Rebecca Vandewalle

Shaowen Wang

Survey Findings – William Barley

AAG-UCGIS Summer School 2019

Reproducible Problem Solving with CyberGIS and Geospatial Data Science

University of Illinois at Urbana-Champaign

Monday July 8 - Saturday July 13, 2019

In July 2019, a week-long summer school on *Reproducible Problem Solving with CyberGIS and Geospatial Data Science* will be co-led by the CyberGIS Center for Advanced Digital and Spatial Studies (CyberGIS Center) at the University of Illinois at Urbana-Champaign (UIUC), American Association of Geographers (AAG), and University Consortium for Geographic Information Science (UCGIS). Approximately 30 graduate students and early career scholars will learn to collaborate in developing novel solutions to complex problems and to take advantage of geospatial data science and cutting-edge scientific advances and technical capabilities of cyberGIS (e.g., CyberGIS-Jupyter and Virtual ROGER: <u>cybergis.illinois.edu/infrastructures</u>). Participants will experience the types of collaborative and professional interactions that are key to addressing reproducible geospatial geospatial data. The program is built on the success of the inaugural <u>UCGIS Summer School in 2017</u>, and ideal for those working on interdisciplinary and transdisciplinary topics, including but not limited to: data-driven social and environmental sciences, digital humanities, geospatial artificial intelligence, and remote sensing big data.

This Summer School will be hosted on the UIUC campus at Urbana, Illinois, USA from Monday July 8 to Saturday July 13, 2019. If you are a graduate student or early-career scholar new to cyberGIS and geospatial data science and want to learn more about integrating them into your research, or are already working on cyberGIS and/or geospatial data science approaches, this Summer School will offer new and exciting opportunities for your professional development, and will help you build connections with others in related fields. UIUC will offer travel awards through generous support of the National Science Foundation (NSF) for participating in the Summer School.

	ogin
	_
	Searc
Announcements	

Guido Cervone, from Penn State University, the winner of the 2019 Carolyn Merry Mentoring Award!

Apply Today for a Spot in our Summer School 2019! Funded!

Meet the 2019 TRELIS Cohort!

lowa's Marc Armstrong Selected as a 2019 UCGIS Fellow

Current GIS&T Job Listings

Upcoming Events

Fri Apr 26, 2019

April 2019 Board Meeting

Category: Board Meetings

Sat Jun 8, 2019

TRELIS Washington DC 2019

Category: Other Events

Mon Jun 10, 2019

Symposium 2019

Category: Symposium

View Full Calendar

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

GSI

Participants' institutions

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

Reproducibility and Replicability in Science

О

COMMITTEE ON REPRODUCIBILITY AND REPLICABILITY IN SCIENCE

HARVEY V. FINEBERG,¹ (Chair), Gordon and Betty Moore Foundation
DAVID B. ALLISON,¹ School of Public Health-Bloomington, Indiana University
LORENA A. BARBA, School of Engineering and Applied Science, George Washington
University
DIANNE CHONG,² Boeing Research and Technology (Retired)
DAVID DONOHO, ^{3,4} Department of Statistics, Stanford University
JULIANA FREIRE, Tandon School of Engineering, New York University
GERALD GABRIELSE,³ Department of Physics, Northwestern University
CONSTANTINE GATSONIS, Center for Statistical Sciences, Brown University
EDWARD HALL, Department of Philosophy, Harvard University
THOMAS H. JORDAN,³ Department of Earth Sciences, University of Southern California

DIETRAM A. SCHEUFELE, Madison and Morgridge Institute for Research, University of Wisconsin-Madison

VICTORIA STODDEN, Institute for Data Sciences and Engineering, University of Illinois at Urbana-Champaign

SIMINE VAZIKE, Department of Psychology, University of Camornia, Davis **TIMOTHY D. WILSON,** Department of Psychology, University of Virginia **WENDY WOOD,** Department of Psychology, University of Southern California and INSEAD-Sorbonne University

Study Staff

JENNIFER HEIMBERG, Study Director THOMAS ARRISON, Program Director MICHAEL COHEN, Senior Program Officer MICHELLE SCHWALBE, Director, Board on Mathematical Sciences and Analytics ADRIENNE STITH BUTLER, Associate Board Director BARBARA A. WANCHISEN, Director, Board on Behavioral, Cognitive, and Sensory Sciences TINA WINTERS, Associate Program Officer REBECCA MORGAN, Senior Librarian THELMA COX, Program Coordinator (beginning January 2019) LESLEY WEBB, Program Assistant (September 2018 through January 2019) GARRET TYSON, Program Assistant (September 2017 through August 2018) ERIN HAMMERS FORSTAG, Consultant Writer

¹ Member of the National Academy of Medicine

- ² Member of the National Academy of Engineering
- ³ Member of the National Academy of Sciences
- ⁴Resigned from the committee on July 24, 2018
- ⁵Resigned from the committee on October 11, 2018

https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science

Computational Reproducibility - Victoria Stodden

- <u>Reproducible, transparent, and scalable geospatial software</u>: Enable researchers to harness the geospatial data revolution for discovery and innovation by combining geospatial software and data at scale, in reproducible and transparent ways
- <u>Structured guidance for computational reproducibility</u>: Establish structured guidance for computational reproducibility in scientific research and education that are dependent on geospatial software

GS

Geospatial Digital Workforce: Diana Sinton

 Increase the nation's workforce capability and capacity to utilize geospatial big data and software for knowledge discovery supported by critical spatial thinking, and to further innovate geospatial software and advance related sciences

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

Ethical and Open Geospatial Software: Coline Dony

 Promote a culture of ethical and open geospatial software driven by diverse communities

Mission

 Transform geospatial software, cyberinfrastructure (CI), and data science across many fields to revolutionize diverse discovery and innovation by enhancing computational transparency and reproducibility

Vision

 A sustainable social and technical ecosystem to enable geospatial-inspired innovation and discovery

Goals

- <u>Reproducible, transparent, and scalable geospatial software</u>: Enable researchers to harness the geospatial data revolution for discovery and innovation by combining geospatial software and data at scale, in reproducible and transparent ways
- <u>Geospatial digital workforce</u>: Increase the nation's workforce capability and capacity to utilize geospatial big data and software for knowledge discovery supported by critical spatial thinking, and to further innovate geospatial software and advance related sciences
- <u>Ethical and open geospatial software</u>: Promote a culture of ethical and open geospatial software driven by diverse communities
- <u>Structured guidance for computational reproducibility</u>: Establish structured guidance for computational reproducibility in scientific research and education that are dependent on geospatial software
- <u>High-performance and data-intensive geospatial software</u>: Further the convergence of high-performance geospatial software with advancements in data-intensive and high-performance computing

Science Drivers – Geospatial Convergence

Crosscutting

GSI

Principles of Engaging Science Drivers: Mike Goodchild

Social Science Example: Ned English

Map Flood Inundation at Continental Scale

Catchments and Flowlines

Digital Elevation Model

Height Above Nearest Drainage (HAND)

(relative elevation of land surface cell above cell in stream to which it flows)

Liu, Y. Y., Maidment, D. R., Tarboton, D. G., Zheng, X., and Wang, S. (2018) "A CyberGIS Integration and Computation Framework for High-Resolution Continental-Scale Flood Inundation Mapping". *Journal of the American Water Resources Association*, DOI:10.1111/1752-1688.12660

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

"Combination of detailed GIS representation of stream network and supercomputing to determine the flow is transformative – CyberGIS has delivered a major success for the nation!" – Dr. David Maidment @ 2015 CyberGIS All Hands Meeting

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

CyberGIS in a Nutshell

Wang, S. (2010) "A CyberGIS Framework for the Synthesis of Cyberinfrastructure, GIS, and Spatial Analysis." *Annals of the Association of American Geographers*, 100(3): 535-557

NSF CyberGIS Software Project ~\$4.8 million, Year: 2010-2017

Principal Investigator

Shaowen Wang

Co-Principal Investigators

- Luc Anselin
- Budhendra Bhaduri
- Timothy Nyerges
- Nancy Wilkins-Diehr

Senior Personnel

- Michael Goodchild
- Sergio Rey
- Marc Snir
- David Tarboton
- E. Lynn Usery

Chair of the Science Advisory Committee

Michael Goodchild

Project Manager

Anand Padmanabhan

Project Staff

- ASU: Wenwen Li and Rob Pahle
- ORNL: Ranga Raju Vatsavai
- SDSC: Choonhan Youn
- UIUC: Yan Liu and Anand Padmanabhan
- Graduate and undergraduate students

Industrial Partner: Esri

Steve Kopp and Dawn Wright

http://cybergis.illinois.edu

www.xsede.org

Wang, S., Liu, Y., and Padmanabhan, A. 2016. "Open CyberGIS Software for Geospatial Research and Education in the Big Data Era". *SoftwareX*, 5: 1-5

Geospatial Data Science

Geospatial Data Science @ Scale

reprodu

- Geospatial
 - Distribution
 - Dependence
 - Integration
 - Heterogeneity
 - Representation
 - Uncertainty
 - Etc.
- Computational
 - Complexity vs. intensity
 - Reproducibility vs. validity
 - Performance vs. reliability
 - Etc.

A Digital Divide - David Tarboton

Data-Intensive & High-Performance Computing

GS

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

NEWS -

NEWS FROM AGU JOURNALS TOPICS & DISCIPLINES **OPINIONS** -BLOGS

AGU'S CENTENNIAL

It's Time to Shift Emphasis Away from **Code Sharing**

Building well-documented, citable frameworks for Earth data analysis will encourage scientific replicability by addressing the underlying issues that inhibit code sharing.

As a community of Earth scientists, we need to develop holistically designed numerical toolboxes to ensure accuracy, transparency, and replicability. Credit: Adam S. Nelsen

By Chad A. Greene and Kaustubh Thirumalai 20 20 February 2019

Have you ever watched a student struggle to perform a seemingly straightforward analytical procedure? It may be a routine preprocessing step, like detrending a time series or removing a seasonal cycle, but somehow the simple operations can stymie a student for weeks. It's tempting to assume that young people with their short attention spans are unwilling or unable to think through the task at hand,

Students may have little choice but to blindly tinker with code until things seem to work.

Indonesian Tsunami

https://eos.org/opinions/its-time-to-shift-emphasis-away-from-code-sharing

Ilinois Data Bank	+ Deposit Dataset	Q Find Data	 Policies 	Help	og in with NetID
CyberGIS-Ju	upyter HAN) Examp	le Notel	book	
Citation:					
Yin, Dandong; Wang	, Shaowen (2018): Cybe	erGIS-Jupyter HA	ND Example N	otebook. University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-6316661_V2	
Export Citation -	you use this dataset, pl	ease cite it.			
Sopy persistent link t	o clipboard Persiste	ent link for this iten	n: https://doi.or	g/10.13012/B2IDB-6316661_V2	
Dataset Descriptio	n	The dataset conta	ains a complete	example (inputs, outputs, codes, intermediate results, visualization webpage) of executing Height Above Nearest Drainage HAND workflow with CyberGIS-Jupyte	r.
Subject		Technology and E	Engineering		
Keywords		cybergis; hydrolo	gy; Jupyter		
License		CC BY			
Corresponding Cro	eator	Shaowen Wang			
Downloaded		16 times			

[-] Versions in Illinois Data Bank

Version	DOI	Comment	Publication Date
2	10.13012/B2IDB-6316661_V2	Removed some unnecessary words, updated section information, updated subfolders and labels.	2018-12-13
1	10.13012/B2IDB-6316661_V1		2018-12-12

[-] Files

Get Custom Zip and Download Link for Selected (0) Select all (1)			
CyberGIS-Jupyter_HAND_Example.zip	607 MB	④ File	
[+] Change Log			

Jupyter environment set in CyberGIS Center for interaction with HPC

Subject Keywords

(HPC) (CyberGIS)

How to cite

Yin, D. (2018). CyberGIS-Jupyter, HydroShare, http://www.hydroshare.org/resource/c477900488744e4a8e1df21326e4789b

Copy

This resource is shared under the Creative Commons Attribution CC BY.

http://creativecommons.org/licenses/by/4.0/

Received: 11 February 2018 Revised: 9 September 2018 Accepted: 15 September 2018

DOI: 10.1002/cpe.5040

WILEY

RESEARCH ARTICLE

CyberGIS-Jupyter for reproducible and scalable geospatial analytics

Dandong Yin^{1,2} | Yan Liu^{1,2,3} | Hao Hu^{1,2,3} | Jeff Terstriep³ | Xingchen Hong³ Anand Padmanabhan^{1,2} | Shaowen Wang^{1,2,3}

¹Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Illinois ²CyberGIS Center for Advanced Digital and Spatial Studies, University of Illinois at Urbana-Champaign, Illinois ³National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Illinois

Correspondence

Shaowen Wang, Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Illinois; or CyberGIS Center for Advanced Digital and Spatial Studies, University of Illinois at Urbana-Champaign, Illinois. Email: shaowen@illinois.edu

Present Address

Department of Geography and Geographic Information Science Natural History Building 1301 W Green Street Champaign, IL 61801 USA

Summary

The interdisciplinary field of cyberGIS (geographic information science and systems (GIS) based on advanced cyberinfrastructure) has a major focus on data- and computation-intensive geospatial analytics. The rapidly growing needs across many application and science domains for such analytics based on disparate geospatial big data poses significant challenges to conventional GIS approaches. This paper describes CyberGIS-Jupyter, an innovative cyberGIS framework for achieving data-intensive, reproducible, and scalable geospatial analytics using Jupyter Notebook based on ROGER, the first cyberGIS supercomputer. The framework adapts the Notebook with built-in cyberGIS capabilities to accelerate gateway application development and sharing while associated data, analytics, and workflow runtime environments are encapsulated into application packages that can be elastically reproduced through cloud-computing approaches. As a desirable outcome, data-intensive and scalable geospatial analytics can be efficiently developed and improved and seamlessly reproduced among multidisciplinary users in a novel cyberGIS science gateway environment.

KEYWORDS

cloud computing, computational reproducibility, cyberGIS, geospatial big data

Yin, D., Liu, Y., Hu, H., Terstriep, J., Hong, X., Padmanabhan, A., and Wang, S. (2018) "CyberGIS-Jupyter for Reproducible and Scalable Geospatial Analytics". Concurrency and Computation: Practice and Experience, https://doi.org/10.1002/cpe.5040

GSI

CyberGIS-Jupyter Architecture

	Multidisciplinary	Geosciences	Geosciences Engineering		Social Sciences		Biosciences
<u>Domain</u> Communities and Sciences	 Computational and Data Sciences CyberGIS & GIScience Emergency Management Environmental Sustainability 	 Atmospheric Science Hydrology Geology Remote Sensing 	 Bioen Enviro Engine Transport 	ergy onmental eering portation	 Geography : Spatial Scier Social Medi Network Political Scier Organization Science 	and nces a & ence nal	 Agriculture Plant biology Medical Science
CyberGIS	Scalable Data & Analytics	Multi-scale Mode Simulation of Cor Spatiotemporal Sy	ling & mplex /stems	Interac & Real- Analyt	tive Sp time tics ma	atial cision- aking	Collaborative Problem Solving
Capabilities &	Data Integration	Scalable GIS Visual An • Optimization • Mapping • Simulation • On-dema • Statistics Visualiza		ytics	GISolve		PSE
<u>Services</u>	Data Cloud Interoperable Access Provenance			CI Access Open Services Spatial Middleware Workflow		ware	 Collaboration Social Networking User Interfaces
(Computation	Dat	a	Ope	eration		Support
Advanced CI	Resource Managemen Private Cloud Scalable Computing	nt - Metadata - Storage & - Databases	Curation	Auditing Scalability Analysis Security Security		 Adv Coll EOT 	anced Applications aboration Services
& Services	 Software Environmen 	• Transfer &	Transfer & Sharing		 System Monitoring 		
	HPC (CPU, GPU, Data- Intensive) Large Memory Large Storage & High Bandwidth Input/Output Storage & High Bandwidth						On-demand Virtualization

* EOT – Education, Outreach, and Training; HPC – High-Performance Computing; PSE – Problem-Solving Environment

Wang, S. (2019) Cyberinfrastructure. *The Geographic Information Science & Technology Body of Knowledge* (2nd Quarter 2019 Edition), John P. Wilson (Ed.). DOI: <u>10.22224/gistbok/2019.2.4</u>

GSI

Organization Structure and Governance

Education and Workforce Development - Eric Shook

- Equip geospatial communities with rigorous computational and data sciences and software engineering skills
- Meet users where they are and have capabilities for users who are not savvy computationally
- Combine formal and informal education for nurturing and serving diverse learning communities

Advanced CI Ecosystem – Anand Padmanabhan

- Engage and support communities (e.g., business, humanities, and social sciences) that are currently not well represented in the national and international CI ecosystem
- Serve as a conduit for bringing capabilities, processes and people together to tackle complex scientific problems while cross-fertilizing innovations of geospatial sciences and software
- Integrate with and leverage advanced CI (e.g., NSF Big Data Hubs, CyberGIS, TRIPODS, and XSEDE) to achieve high-quality, interoperable, and scalable software for broad impacts

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

Core Capabilities and Services – Carol Song

- **Deep**: To help users of geospatial data and software to tackle the challenges of scale and complexity of utilizing geospatial data in modeling, analytics, visualization and decision making to solve high-impact research problems and societal challenges
- Wide: To enable broader use of geospatial software and data especially by non-traditional and diverse geospatial software users, and train the next generation of researchers and workforce in creating and using geospatial software following the FAIR science principles
- **Transparent**: To promote and enable transparency and reproducibility of data-driven research and innovation by engaging both geospatial data producers and consumers in developing structured guidance, and employing an inclusive governance model

Partnerships – George Percivall

- Academic & International
 - -AAG
 - AGILE
 - AGU
 - CyberGIS
 - ESIP
 - GIScience
 - UCGIS
 - XSEDE
 - Etc.

- Government
 - CDC
 - DOE
 - EPA
 - NASA
 - NGA
 - NIH
 - USGS
 - Etc.

- Industry
 - DigitalGlobe
 - Esri
 - Google
 - HDF
 - Kitware
 - LimnoTech
 - OGC
 - Etc.

Outreach – Donna Cox

Sustainability – Dan Katz

Evaluation – Margaret Palmer

Leadership

- Focus on fundamental scientific and societal challenges
- Prepare the future workforce
- Bridge the digital divide
- Foster open collaboration
- Enable discovery and innovation

Grand Opportunity!

Revolutionize discovery and innovation across many fields through synergistically advancing geospatial cyberinfrastructure, sciences, and software!

GSI

Toward a sustainable social and technical ecosystem to enable geospatial-inspired discovery and innovation

14

Community Inputs – So Important!

- For this webinar
 - <u>https://gsi.cigi.illinois.edu</u>
 - Recording will be available in early January 2020
- Strategic plan
 - <u>http://bit.ly/GSI-StrategicPlan</u>
- Twitter hashtag
 - #GSIfuture

Acknowledgments

National Science Foundation

- BCS-0846655
- IIS-1354329
- OAC-1743184
- OAC-1443080
- OAC-1429699
- OAC-1664119
- OAC-1551492
- OAC-1047916
- XSEDE

Thanks !

Comments / Questions?

Email: <u>shaowen@illinois.edu</u>